A Bi-Directional Two-Dimensional Deep Subspace Learning Network with Sparse Representation for Object Recognition

Author:

Li Xiaoxue1ORCID,Feng Weijia12ORCID,Wang Xiaofeng3ORCID,Guo Jia1,Chen Yuanxu4,Yang Yumeng1,Wang Chao1,Zuo Xinyu1,Xu Manlu1

Affiliation:

1. College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China

2. Postdoctoral Innovation Practice Base, Huafa Industrial Share Co., Ltd., Zhuhai 519000, China

3. Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin 300384, China

4. Ping An Technology, Shenzhen 518000, China

Abstract

A principal component analysis network (PCANet), as one of the representative deep subspace learning networks, utilizes principal component analysis (PCA) to learn filters that represent the dominant structural features of objects. However, the filters used in PCANet are linear combinations of all the original variables and contain complex and redundant principal components, which hinders the interpretability of the results. To address this problem, we introduce sparse constraints into a subspace learning network and propose three sparse bi-directional two-dimensional PCANet algorithms, including sparse row 2D2PCANet (SR2D2PCANet), sparse column 2D2PCANet (SC2D2PCANet), and sparse row–column 2D2PCANet (SRC2D2PCANet). These algorithms perform sparse operations on the projection matrices in the row, column, and row–column direction, respectively. Sparsity is achieved by utilizing the elastic net to shrink the loads of the non-primary elements in the principal components to zero and to reduce the redundancy in the projection matrices, thus improving the learning efficiency of the networks. Finally, a variety of experimental results on ORL, COIL-100, NEC, and AR datasets demonstrate that the proposed algorithms learn filters with more discriminative information and outperform other subspace learning networks and traditional deep learning networks in terms of classification and run-time performance, especially for less sample learning.

Funder

National Natural Science Foundation of China

National Key Research and Development Plan

Application Foundation and Advanced Technology Research Project of Tianjin

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3