Efficient CU Decision Algorithm for VVC 3D Video Depth Map Using GLCM and Extra Trees

Author:

Wang Fengqin1,Wang Zhiying1,Zhang Qiuwen1

Affiliation:

1. College of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China

Abstract

The new generation of 3D video is an international frontier research hotspot. However, the large amount of data and high complexity are core problems to be solved urgently in 3D video coding. The latest generation of video coding standard versatile video coding (VVC) adopts the quad-tree with nested multi-type tree (QTMT) partition structure, and the coding efficiency is much higher than other coding standards. However, the current research work undertaken for VVC is less for 3D video. In light of this context, we propose a fast coding unit (CU) decision algorithm based on the gray level co-occurrence matrix (GLCM) and Extra trees for the characteristics of the depth map in 3D video. In the first stage, we introduce an edge detection algorithm using GLCM to classify the CU in the depth map into smooth and complex edge blocks based on the extracted features. Subsequently, the extracted features from the CUs, classified as complex edge blocks in the first stage, are fed into the constructed Extra trees model to make a fast decision on the partition type of that CU and avoid calculating unnecessary rate-distortion cost. Experimental results show that the overall algorithm can effectively reduce the coding time by 36.27–51.98%, while the Bjøntegaard delta bit rate (BDBR) is only increased by 0.24% on average which is negligible, all reflecting the superior performance of our method. Moreover, our algorithm can effectively ensure video quality while saving much encoding time compared with other algorithms.

Funder

National Natural Science Foundation of China

Basic Research Projects of Education Department of Henan

Key projects Natural Science Foundation of Henan

Scientic and Technological Project of Henan Province

Postgraduate Education Reform and Quality Improvement Project of Henan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3