A Survey on Data-Driven Learning for Intelligent Network Intrusion Detection Systems

Author:

Abdelmoumin GhadaORCID,Whitaker JessicaORCID,Rawat Danda B.ORCID,Rahman Abdul

Abstract

An effective anomaly-based intelligent IDS (AN-Intel-IDS) must detect both known and unknown attacks. Hence, there is a need to train AN-Intel-IDS using dynamically generated, real-time data in an adversarial setting. Unfortunately, the public datasets available to train AN-Intel-IDS are ineluctably static, unrealistic, and prone to obsolescence. Further, the need to protect private data and conceal sensitive data features has limited data sharing, thus encouraging the use of synthetic data for training predictive and intrusion detection models. However, synthetic data can be unrealistic and potentially bias. On the other hand, real-time data are realistic and current; however, it is inherently imbalanced due to the uneven distribution of anomalous and non-anomalous examples. In general, non-anomalous or normal examples are more frequent than anomalous or attack examples, thus leading to skewed distribution. While imbalanced data are commonly predominant in intrusion detection applications, it can lead to inaccurate predictions and degraded performance. Furthermore, the lack of real-time data produces potentially biased models that are less effective in predicting unknown attacks. Therefore, training AN-Intel-IDS using imbalanced and adversarial learning is instrumental to their efficacy and high performance. This paper investigates imbalanced learning and adversarial learning for training AN-Intel-IDS using a qualitative study. It surveys and synthesizes generative-based data augmentation techniques for addressing the uneven data distribution and generative-based adversarial techniques for generating synthetic yet realistic data in an adversarial setting using rapid review, structured reporting, and subgroup analysis.

Funder

National Science Foundation

DoD Center of Excellence in AI and Machine Learning (CoE-AIML) at Howard University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PPFCM-SMOTE: a novel balancing system for anomaly detection in IoT edge using probabilistic possibilistic fuzzy clustering and SMOTE;International Journal of Information Technology;2024-08-13

2. Generative AI in Network Security and Intrusion Detection;Advances in Information Security, Privacy, and Ethics;2024-07-26

3. Enhancing Intrusion Detection Through Data Perturbation Augmentation Strategy;2024 IEEE Ural-Siberian Conference on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT);2024-05-13

4. A Pattern Mining-Based False Data Injection Attack Detector for Industrial Cyber-Physical Systems;IEEE Transactions on Industrial Informatics;2024-02

5. A CNN-BiLSTM Method Based on Attention Mechanism for Class-imbalanced Abnormal Traffic Detection;Proceedings of the International Conference on Computer Vision and Deep Learning;2024-01-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3