Abstract
The use of beamforming technology in standalone (SA) millimeter wave communications results in directional transmission and reception modes at the mobile station (MS) and base station (BS). This results in initial beam access challenges, since the MS and BS are now compelled to perform spatial search to determine the best beam directions that return highest signal levels. The high number of signal measurements here prolongs access times and latencies, as well as increasing power and energy consumption. Hence this paper proposes a first study on leveraging deep learning schemes to simplify the beam access procedure in standalone mmWave networks. The proposed scheme combines bidirectional recurrent neural network (BRNN) and long short-term memory (LSTM) to achieve fast initial access times. Namely, the scheme predicts the best beam index for use in the next time step once a MS accesses the network, e.g., transition from sleep to active (or idle) modes. The scheme eliminates the need for beam scanning, thereby achieving ultra-low access times and energy efficiencies as compared to existing methods.
Funder
Deanship of Scientific Research, King Faisal University
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献