Time-Variant Front-End Read-Out Electronics for High-Data-Rate Detectors

Author:

Sharifi Leila,De Matteis MarcelloORCID,Kroha Hubert,Richter Robert,Baschirotto AndreaORCID

Abstract

The foreseen incremental luminosity for near-future high-energy physics experiments demands evolution for the read-out electronics in terms of event data-rate. However, the filtering necessary to reject noise and meet the signal-to-noise-ratio requirements imposes a restriction on the operational speed of the conventional read-out electronics. The stringent trade-off between signal-to-noise-ratio and the event data-rate originates from the time-invariant behavior of the conventional systems. In this paper, the cases of time-variant systems are addressed, studying a benchmark with the RC-CR shaping function used in time-over-threshold methods. It was demonstrated that the time-variant systems enable a higher data-rate for the given noise performance. Moreover, taking advantage of time-variant systems, the proposed rising-edge method enables further data-rate enhancement with respect to the traditional time-over-threshold technique by reading the data from the rising edge of the analog output waveform. A comparison between the conventional time-invariant time-over-threshold technique, its time-variant equivalent and rising-edge method confirms the better performance of the latter one in terms of data-rate enhancement for a target noise performance. Moreover, design challenges for time-variant systems are briefly discussed, considering the ATLAS Monitored Drift Tube detector as a design case.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A TV-Module for DC-Baseline Compensation in Analog Front-End Design;2022 International Conference on Computing, Networking, Telecommunications & Engineering Sciences Applications (CoNTESA);2022-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3