The Remote Control of the Artillery Rocket Set as a Strongly Nonlinear System Subject to Random Loads

Author:

Koruba Zbigniew,Szmidt PiotrORCID

Abstract

On the modern battlefield, fighting capabilities, such as speed, target detection range, target identification capabilities, and shooting effectiveness, of short-range artillery rocket sets (ARSs) are constantly being improved. Problems arise when attempting to successfully fire such kits in the face of disruption from both the cannon and the moving platform on which the cannon is mounted. Furthermore, the set is a variable mass system since it can fire anywhere from a few to dozens or even hundreds of missiles in a brief period of time, implying that the ARS is a highly nonlinear system of variable parameters (non-stationary). This work shows how to control such a system. If the ARS is placed on a moving basis where there is both a system and measurement noise, the state variables must be restored, and the ARS data must be filtered. Therefore, in addition to the LQR regulator, an extended Kalman filter was used. As a consequence of this synthesis, an LQG (linear quadratic Gaussian) regulator of ARS was obtained, which was used to follow the target along the line of sight. The key goal of this paper is to develop control algorithms that will increase the performance of ARS control in elevation and azimuth, as well as the accuracy of achieving and eliminating maneuverable air targets. Moreover, through the quality criterion adopted, we hope to affect control energy costs while maintaining control precision. Graphical representations of certain computational simulation results are provided.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference26 articles.

1. Tracking of maneuvering non-ellipsoidal extended target with varying number of sub-objects

2. An analysis of the gyroscope dynamics of an anti-aircraft missile launched from a mobile platform

3. Tactical and strategic missile Guidance;Zarchan,2012

4. Structure and innovative Technologies In the new Polish 35 mm naval weapon system;Gacek,2016

5. ZU-23-2MR Naval Anti-Aircraft Artillery Systemhttp://www.zmt.tarnow.pl/wordpress/wp-content/uploads/2018/09/wrobel_eng.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3