Controllable and Scalable Fabrication of Superhydrophobic Hierarchical Structures for Water Energy Harvesting

Author:

Guo MeilingORCID,Wang Cheng,Yang Zhenchao,Xu Zhentao,Yang Mingshun,Zhao Pengkang,Zhou Yan,Li PengyangORCID,Wang Quandai,Li YanORCID

Abstract

We report a controllable and scalable fabrication approach for the superhydrophobic hierarchical structures and demonstrate the excellent ability to harvest water energy when applied to water-solid contact triboelectric nanogenerator (TENG). A strategy combined with multiple photolithography and micromolding process was developed to accurately regulate the diameters and the center distances of the two-level micropillars. A variety of hierarchical structures were successfully fabricated and presented the advantages of structure control, large scale, high accuracy, and high consistency. The hydrophobic property characterizations were conducted, and the results indicated that the hierarchical structures showed a larger contact angle than the single-level structures and achieved superhydrophobicity. Then the hierarchical structures were applied to water-TENGs with flowing water continuously dripping on, and the effect of the structure parameter on the triboelectric output was analyzed. The hierarchical structures exhibited a superior ability to harvest water energy than the flat film and the single-level structures due to the enhanced friction area and superhydrophobic property. At a flowing velocity of 8 mL/s, the hierarchical structure generated the output voltage of approximately 34 V and the short-circuit current of around 5 μA. The water-TENG device exhibited a power density peak of 7.56 μW/cm2 with a resistive load of 16.6 MΩ at a flowing velocity of 10 mL/s. These findings shed light on the potential applications of the hierarchical structures-based water-TENGs to water energy harvesting and self-powered sensor devices.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Plan in Shaanxi Province of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3