FPGA-Based Reconfigurable Convolutional Neural Network Accelerator Using Sparse and Convolutional Optimization

Author:

Gowda Kavitha Malali Vishveshwarappa,Madhavan Sowmya,Rinaldi StefanoORCID,Divakarachari Parameshachari Bidare,Atmakur Anitha

Abstract

Nowadays, the data flow architecture is considered as a general solution for the acceleration of a deep neural network (DNN) because of its higher parallelism. However, the conventional DNN accelerator offers only a restricted flexibility for diverse network models. In order to overcome this, a reconfigurable convolutional neural network (RCNN) accelerator, i.e., one of the DNN, is required to be developed over the field-programmable gate array (FPGA) platform. In this paper, the sparse optimization of weight (SOW) and convolutional optimization (CO) are proposed to improve the performances of the RCNN accelerator. The combination of SOW and CO is used to optimize the feature map and weight sizes of the RCNN accelerator; therefore, the hardware resources consumed by this RCNN are minimized in FPGA. The performances of RCNN-SOW-CO are analyzed by means of feature map size, weight size, sparseness of the input feature map (IFM), weight parameter proportion, block random access memory (BRAM), digital signal processing (DSP) elements, look-up tables (LUTs), slices, delay, power, and accuracy. An existing architectures OIDSCNN, LP-CNN, and DPR-NN are used to justify efficiency of the RCNN-SOW-CO. The LUT of RCNN-SOW-CO with Alexnet designed in the Zynq-7020 is 5150, which is less than the OIDSCNN and DPR-NN.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-adapting reconfigurable multiply-accumulator for real-time image processing in embedded systems;Real-time Processing of Image, Depth, and Video Information 2024;2024-06-20

2. Dynamically Adaptive Accumulator for in-sensor ANN Hardware Accelerators;2024 IEEE International Symposium on Circuits and Systems (ISCAS);2024-05-19

3. A Memory Efficient Run-time Re-configurable Convolution IP Core for Deep Neural Networks Inference on FPGA Devices;2023 IEEE International Symposium on Smart Electronic Systems (iSES);2023-12-18

4. Intelligent Mode-Locking Enabled by Real-Time Reinforcement Learning;2023 Asia Communications and Photonics Conference/2023 International Photonics and Optoelectronics Meetings (ACP/POEM);2023-11-04

5. Research on Defect Detection in Automated Fiber Placement Processes Based on a Multi-Scale Detector;Electronics;2022-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3