Abstract
DC–DC converter fault diagnosis, executed via neural networks built by exploiting the information deriving from testability analysis, is the subject of this paper. The networks under consideration are complex valued neural networks (CVNNs), whose fundamental feature is the proper treatment of the phase and the information contained in it. In particular, a multilayer neural network based on multi-valued neurons (MLMVN) is considered. In order to effectively design the network, testability analysis is exploited. Two possible ways for executing this analysis on DC–DC converters are proposed, taking into account the single-fault hypothesis. The theoretical foundations and some applicative examples are presented. Computer programs, based on symbolic analysis techniques, are used for both the testability analysis and the neural network training phase. The obtained results are very satisfactory and demonstrate the optimal performances of the method.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献