Bayesian Hyper-Parameter Optimisation for Malware Detection

Author:

ALGorain Fahad T.ORCID,Clark John A.ORCID

Abstract

Malware detection is a major security concern and has been the subject of a great deal of research and development. Machine learning is a natural technology for addressing malware detection, and many researchers have investigated its use. However, the performance of machine learning algorithms often depends significantly on parametric choices, so the question arises as to what parameter choices are optimal. In this paper, we investigate how best to tune the parameters of machine learning algorithms—a process generally known as hyper-parameter optimisation—in the context of malware detection. We examine the effects of some simple (model-free) ways of parameter tuning together with a state-of-the-art Bayesian model-building approach. Our work is carried out using Ember, a major published malware benchmark dataset of Windows Portable Execution metadata samples, and a smaller dataset from kaggle.com (also comprising Windows Portable Execution metadata). We demonstrate that optimal parameter choices may differ significantly from default choices and argue that hyper-parameter optimisation should be adopted as a ‘formal outer loop’ in the research and development of malware detection systems. We also argue that doing so is essential for the development of the discipline since it facilitates a fair comparison of competing machine learning algorithms applied to the malware detection problem.

Funder

Norwegian University of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference41 articles.

1. Trends in Malware Attacks: Identification and Mitigation Strategies;Pandey,2020

2. Addressing Malware Attacks on Connected and Autonomous Vehicles: Recent Techniques and Challenges;Al-Sabaawi,2021

3. Hyperopt: a Python library for model selection and hyperparameter optimization

4. Ember: An open dataset for training static pe malware machine learning models;Anderson;arXiv,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3