Research on Orbital Angular Momentum Multiplexing Communication System Based on Neural Network Inversion of Phase

Author:

Cao Yang,Zhang ZupengORCID,Peng Xiaofeng,Wang Yuhan,Qin Huaijun

Abstract

An adaptive optical wavefront recovery method based on a residual attention network is proposed for the degradation of an Orbital Angular Momentum multiplexing communication system performance caused by atmospheric turbulence in free-space optical communication. To prevent the degeneration phenomenon of neural networks, the residual network is used as the backbone network, and a multi-scale residual hybrid attention network is constructed. Distributed feature extraction by convolutional kernels at different scales is used to enhance the network’s ability to represent light intensity image features. The attention mechanism is used to improve the recognition rate of the network for broken light spot features. The network loss function is designed by combining realistic evaluation indexes so as to obtain Zernike coefficients that match the actual wavefront aberration. Simulation experiments are carried out for different atmospheric turbulence intensity conditions, and the results show that the residual attention network can reconstruct the turbulent phase quickly and accurately. The peaks to valleys of the recovered residual aberrations were between 0.1 and 0.3 rad, and the root means square was between 0.02 and 0.12 rad. The results obtained by the residual attention network are better than those of the conventional network at different SNRs.

Funder

Science and technology project of Chongqing Education Commission

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3