Abstract
The ever increasing popularity of Cloud and similar services pushes the demand for data centres, which have a high power consumption. In an attempt to increase the sustainability of the power generation, data centres have been fed by microgrids which include renewable generation—so-called ‘green data centres’. However, the peak load of data centres often does not coincide with solar generation, because demand mostly peaks in the evening. Shifting power to data centres incurs transmission losses; shifting the data transmission has no such drawback. We demonstrate the effectivity of computational load shifting between data centres located in different time zones using a case study that balances demands between three data centres on three continents. This study contributes a method that exploits the opportunities provided by the varied timing of peak solar generation across the globe, transferring computation load to data centres that have sufficient renewable energy whenever possible. Our study shows that balancing computation loads between three green data centres on three continents can improve the use of renewables by up to 22%. Assuming the grid energy does not include renewables, this amounts to a 13% reduction in CO2 emissions.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献