Motion Planning of a Second-Order Nonholonomic Chained Form System Based on Holonomy Extraction

Author:

Ito MasahideORCID

Abstract

This paper proposes a motion planning algorithm for dynamic nonholonomic systems represented in a second-order chained form. The proposed approach focuses on the so-called holonomy resulting from a kind of motion that traverses a closed path in a reduced configuration space of the system. According to the author’s literature survey, control approaches that make explicit use of holonomy exist for kinematic nonholonomic systems but does not exist for dynamic nonholonomic systems. However, the second-order chained form system is controllable. Also, the structure of the second-order chained form system analogizes with the one of the first-order chained form for kinematic nonholonomic systems. These survey and perspectives brought a hypothesis that there exists a specific control strategy for extracting holonomy of the second-order chained form system to the author. To verify this hypothesis, this paper shows that the holonomy of the second-order chained form system can be extracted by combining two appropriate pairs of sinusoidal inputs. Then, based on such holonomy extraction, a motion planning algorithm is constructed. Furthermore, the effectiveness is demonstrated through some simulations including an application to an underactuated manipulator.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference38 articles.

1. A Mathematical Introduction to Robotic Manipulation;Murray,1994

2. Planning Algorithms;LaValle,2006

3. A survey of underactuated mechanical systems

4. Nonholonomic Mechanics and Control;Bloch,2015

5. Asymptotic stability and feedback stabilization;Brockett,1983

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Angular Frequency Switching of Holonomy-Based Motion Planning for the Second-Order Chained Form System;2024 13th International Workshop on Robot Motion and Control (RoMoCo);2024-07-02

2. Linear Algebra Based Control: Application to a second order chained form system;IEEE Latin America Transactions;2021-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3