Autonomous Fuzzy Controller Design for the Utilization of Hybrid PV-Wind Energy Resources in Demand Side Management Environment

Author:

Anthony MohanasundaramORCID,Prasad Valsalal,Kannadasan RajuORCID,Mekhilef SaadORCID,Alsharif Mohammed H.ORCID,Kim Mun-KyeomORCID,Jahid AbuORCID,Aly Ayman A.

Abstract

This work describes an optimum utilization of hybrid photovoltaic (PV)—wind energy for residential buildings on its occurrence with a newly proposed autonomous fuzzy controller (AuFuCo). In this regard, a virtual model of a vertical axis wind turbine (VAWT) and PV system (each rated at 2 kW) are constructed in a MATLAB Simulink environment. An autonomous fuzzy inference system is applied to model primary units of the controller such as load forecasting (LF), grid power selection (GPS) switch, renewable energy management system (REMS), and fuzzy load switch (FLS). The residential load consumption pattern (4 kW of connected load) is allowed to consume energy from the grid and hybrid resources located at the demand side and classified as base, priority, short-term, and schedulable loads. The simulation results identify that the proposed controller manages the demand side management (DSM) techniques for peak load shifting and valley filling effectively with renewable sources. Also, energy costs and savings for the home environment are evaluated using the proposed controller. Further, the energy conservation technique is studied by increasing renewable conversion efficiency (18% to 23% for PV and 35% to 45% for the VAWT model), which reduces the spending of 0.5% in energy cost and a 1.25% reduction in grid demand for 24-time units/day of the simulation study. Additionally, the proposed controller is adapted for computing energy cost (considering the same load pattern) for future demand, and it is exposed that the PV-wind energy cost reduced to 6.9% but 30.6% increase of coal energy cost due to its rise in the Indian energy market by 2030.

Funder

Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3