Differential Evolution Based Machine Learning Scheme for Secure Cooperative Spectrum Sensing System

Author:

Gul Noor,Kim Su MinORCID,Ahmed SaeedORCID,Khan Muhammad SajjadORCID,Kim Junsu

Abstract

The secondary users (SUs) in cognitive radio networks (CRNs) can obtain reliable spectrum sensing information of the primary user (PU) channel using cooperative spectrum sensing (CSS). Multiple SUs share their sensing observations in the CSS system to tackle fading and shadowing conditions. The presence of malicious users (MUs) may pose threats to the performance of CSS due to the reporting of falsified sensing data to the fusion center (FC). Different categories of MUs, such as always yes, always no, always opposite, and random opposite, are widely investigated by researchers. To this end, this paper proposes a hybrid boosted tree algorithm (HBTA)-based solution that combines the differential evolution (DE) and boosted tree algorithm (BTA) to mitigate the effects of MUs in the CSS systems, leading to reliable sensing results. An optimized threshold and coefficient vector, determined against the SUs employing DE, is utilized to train the BTA. The BTA is a robust ensembling machine learning (ML) technique gaining attention in spectrum sensing operations. To show the effectiveness of the proposed scheme, extensive simulations are performed at different levels of signal-to-noise-ratios (SNRs) and with different sensing samples, iteration levels, and population sizes. The simulation results show that more reliable spectrum decisions can be achieved compared to the individual utilization of DE and BTA schemes. Furthermore, the obtained results show the minimum sensing error to be exhibited by the proposed HBTA employing a DE-based solution to train the BTA. Additionally, the proposed scheme is compared with several other CSS schemes such as simple DE, simple BTA, maximum gain combination (MGC), particle swarm optimization (PSO), genetic algorithm (GA), and K-nearest neighbor (KNN) algorithm-based soft decision fusion (SDF) schemes to validate its effectiveness.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3