Abstract
Electric power systems are facing tremendous changes and power electronic devices are playing an increasingly crucial role in this transformation. In this contest, the study of power electronic devices behavior becomes of the utmost importance, and in particular, evaluation of their losses to understand their performance. Several methods can be found in literature to evaluate power or energy losses, but each of them is associated with shortcomings (such as missing an important factor or having narrow current or voltage range) that in practice become a strong limit to implement them or in a simulation process. To overcome this problem, this paper evaluates existing methods and proposes new loss calculation methods for power electronics losses that can be used within simulation tools at any converter configuration and application range, splitting power electronic losses into switching and conduction losses. The proposed new approach formulates each loss calculation procedure in a systematic way. The presented methods are implemented in Matlab Simulink and simulation results are compared with data obtained from the Semikron SemiSel v4 online tool, which is used as a benchmark. The outcomes reveal that, with this new approach, the proposed methods can cover wider working operation range compared to the existing methods having better accuracy.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献