Vocal Melody Extraction via HRNet-Based Singing Voice Separation and Encoder-Decoder-Based F0 Estimation

Author:

Gao Yongwei,Zhang XulongORCID,Li WeiORCID

Abstract

Vocal melody extraction is an important and challenging task in music information retrieval. One main difficulty is that, most of the time, various instruments and singing voices are mixed according to harmonic structure, making it hard to identify the fundamental frequency (F0) of a singing voice. Therefore, reducing the interference of accompaniment is beneficial to pitch estimation of the singing voice. In this paper, we first adopted a high-resolution network (HRNet) to separate vocals from polyphonic music, then designed an encoder-decoder network to estimate the vocal F0 values. Experiment results demonstrate that the effectiveness of the HRNet-based singing voice separation method in reducing the interference of accompaniment on the extraction of vocal melody, and the proposed vocal melody extraction (VME) system outperforms other state-of-the-art algorithms in most cases.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Implementation of Integration of AI and IOT Along with Metaverse Technology in the Field of Healthcare Industry;2024 4th International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE);2024-05-14

2. DJCM: A Deep Joint Cascade Model for Singing Voice Separation and Vocal Pitch Estimation;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

3. Korean Pansori Vocal Note Transcription Using Attention-Based Segmentation and Viterbi Decoding;Applied Sciences;2024-01-05

4. Enhancing Vocal Melody Extraction With Multilevel Contexts;IEEE Signal Processing Letters;2024

5. Vocal Melody Extraction Based on Sparse Autoencoding Neural Networks;Lecture Notes in Networks and Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3