Abstract
In a battery management system (BMS), battery equalizer is used to achieve voltage consistency between series connected battery cells. Recently, serious inconsistency has been founded to exist in retired batteries, and traditional equalizers are slow or inefficient to handle the situation. The multicell-to-multicell (MC2MC) topology, which can directly transfer energy from consecutive strong cells to consecutive weak cells, is promising to solve the problem, but its performance is limited by the existing converter. Therefore, this paper proposes an enhanced MC2MC equalizer based on a novel bipolar-resonant LC converter (BRLCC), which supports flexible and efficient operation modes with stable balancing power, can greatly improve the balancing speed without much sacrificing the efficiency. Mathematical analysis and comparison with typical equalizers are provided to illustrate its high balancing speed and good efficiency. An experimental prototype for 8 cells is built, and the balancing powers under different operation modes are from 1.426 W to 12.559 W with balancing efficiencies from 84.84% to 91.68%.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献