An RSSI-Based Localization, Path Planning and Computer Vision-Based Decision Making Robotic System

Author:

Upadhyay JatinORCID,Rawat AbhishekORCID,Deb Dipankar,Muresan Vlad,Unguresan Mihaela-LigiaORCID

Abstract

A robotic navigation system operates flawlessly under an adequate GPS signal range, whereas indoor navigation systems use the simultaneous localization and mapping system or other vision-based localization systems. The sensor used in indoor navigation systems is not suitable for low power and small scale robotic systems. The wireless area network transmitting devices have fixed transmission power, and the receivers get the different values of signal strength based on their surrounding environments. In the proposed method, the received signal strength index (RSSI) values of three fixed transmitter units are measured every 1.6 m in mesh format and analyzed by the classifiers, and robot position can be mapped in the indoor area. After navigation, the robot analyzes objects and detects and recognize human faces with the help of object recognition and facial recognition-based classification methods respectively. This robot detects the intruder with the current position in an indoor environment.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Possibilities of using WSN for object localization and analysis of acquired data;2023 IEEE 21st World Symposium on Applied Machine Intelligence and Informatics (SAMI);2023-01-19

2. Sound Localization Based on Acoustic Source Using Multiple Microphone Array in an Indoor Environment;Electronics;2022-03-12

3. A Stochastic Learning Algorithm for Machine Fault Diagnosis;Shock and Vibration;2022-02-18

4. UAV-Based Target Localization in Dense Areas with Computer Vision and GPS Hybrid Navigation Model;2021 IEEE International India Geoscience and Remote Sensing Symposium (InGARSS);2021-12-06

5. Predicate-Based Model of Problem-Solving for Robotic Actions Planning;Mathematics;2021-11-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3