Robust Active Shape Model via Hierarchical Feature Extraction with SFS-Optimized Convolution Neural Network for Invariant Human Age Classification

Author:

Rizwan Syeda Amna,Jalal Ahmad,Gochoo Munkhjargal,Kim KibumORCID

Abstract

The features and appearance of the human face are affected greatly by aging. A human face is an important aspect for human age identification from childhood through adulthood. Although many traits are used in human age estimation, this article discusses age classification using salient texture and facial landmark feature vectors. We propose a novel human age classification (HAC) model that can localize landmark points of the face. A robust multi-perspective view-based Active Shape Model (ASM) is generated and age classification is achieved using Convolution Neural Network (CNN). The HAC model is subdivided into the following steps: (1) at first, a face is detected using aYCbCr color segmentation model; (2) landmark localization is done on the face using a connected components approach and a ridge contour method; (3) an Active Shape Model (ASM) is generated on the face using three-sided polygon meshes and perpendicular bisection of a triangle; (4) feature extraction is achieved using anthropometric model, carnio-facial development, interior angle formulation, wrinkle detection and heat maps; (5) Sequential Forward Selection (SFS) is used to select the most ideal set of features; and (6) finally, the Convolution Neural Network (CNN) model is used to classify according to age in the correct age group. The proposed system outperforms existing statistical state-of-the-art HAC methods in terms of classification accuracy, achieving 91.58% with The Images of Groups dataset, 92.62% with the OUI Adience dataset and 94.59% with the FG-NET dataset. The system is applicable to many research areas including access control, surveillance monitoring, human–machine interaction and self-identification.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3