Energy-Aware Next-Generation Mobile Routing Chains with Fog Computing for Emerging Applications

Author:

Haseeb Khalid1ORCID,Alzahrani Fahad A.2ORCID,Siraj Mohammad3ORCID,Ullah Zahid4ORCID,Lloret Jaime5ORCID

Affiliation:

1. Department of Computer Science, Islamia College Peshawar, Peshawar 25120, Pakistan

2. Computer Engineering Department, College of Computer and Information Systems, Umm Al-Qura University, Makkah 21955, Saudi Arabia

3. Electrical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia

4. Institute of Management Sciences, Peshawar 25000, Pakistan

5. Integrated Management Coastal Research Institute, Universitat Politecnica de Valencia, Camino Vera s/n, 46022 Valencia, Spain

Abstract

The Internet of Things (IoT) provides robust services to connected sensors in a distributed manner, and maintains real-time communication using wireless standards. The smart network has offered many autonomous smart systems to collect information from remote nodes, and share it by exploring the network layer. Researchers have recently offered a variety of ways to increase the effectiveness of emerging applications using trustworthy relaying systems. However, there are still many issues with route reformulation due to frequent disconnections of mobile devices and resource limitations. Furthermore, most of the existing methods for IoT systems are unable to utilize network resources, which lowers the performance of green networks. Thus, providing a foolproof solution for the autonomous system with energy efficiency is a challenging task. Therefore, this paper presents an algorithm for the mobile network using fog computing to reduce network disconnectivity. Furthermore, using security services, the proposed algorithm efficiently explores the characteristics of the device, and avoids malicious traffic to drain the additional energy consumption of the network. The main aspects of the proposed algorithm are as follows: (i) using the adjustable transmission power, the proposed algorithm offers a fault-tolerant solution to transmit the aggregated data over the unpredictable wireless system; (ii) with the support of fog nodes, the data load is reduced among devices with the offering of a secured authentication scheme. Using simulations, the proposed algorithm is tested, and its significance is demonstrated against other related studies.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3