UAV Sensors Autonomous Integrity Monitoring—SAIM

Author:

Koukiou Georgia1ORCID,Anastassopoulos Vassilis1ORCID

Affiliation:

1. Electronics Lab., Physics Department, University of Patras, 26504 Patras, Greece

Abstract

For Unmanned Aerial Vehicles (UAVs), it is of crucial importance to develop a technically advanced Collision Avoidance System (CAS). Such a system must necessarily consist of many sensors of various types, each one having special characteristics and performance. The poor performance of one of the sensors can lead to a total failure in collision avoidance if there is no provision for the performance of each separate sensor to be continuously monitored. In this work, a Sensor Autonomous Integrity Monitoring (SAIM) methodology is proposed. The configuration of the sensors and their interaction is based on a fusion procedure that involves a total of five sensors. Accordingly, the performance of each one of the sensors is continuously checked against the combined (fused) operation of the other four. A complementary experiment with a total of four sensors, one of which had low performance, was also conducted. Experimental results reveal a reliable approach for Sensor Autonomous Integrity Monitoring (SAIM). The method can be easily extended to a larger number of sensors.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3