A New Energy-Aware Method for Gas Lift Allocation in IoT-Based Industries Using a Chemical Reaction-Based Optimization Algorithm

Author:

Zanbouri Kouros,Razoughi Bastak Mostafa,Alizadeh Seyed Mehdi,Jafari Navimipour NimaORCID,Yalcin Senay

Abstract

The Internet of Things (IoT) has recently developed opportunities for various industries, including the petrochemical industry, that allow for intelligent manufacturing with real-time management and the analysis of the produced big data. In oil production, extracting oil reduces reservoir demand, causing oil supply to fall below the economically viable level. Gas lift is a popular artificial lift system that is both efficient and cost-effective. If gas supplies in the gas lift process are not limited, a sufficient amount of gas may be injected into the reservoir to reach the highest feasible production rate. Because of the limited supply of gas, it is essential to achieve the sustainable utilization of our limited resources and manage the injection rate of the gas into each well in order to enhance oil output while reducing gas injection. This study describes a novel IoT-based chemical reaction optimization (CRO) technique to solve the gas lift allocation issue. The CRO algorithm is inspired by the interaction of molecules with each other and achieving the lowest possible state of free energy from an unstable state. The CRO algorithm has excellent flexibility, enabling various operators to modify solutions and a favorable trade-off between intensification and diversity. A reasonably fast convergence rate serves as a powerful motivator to use as a solution. The extensive simulation and computational study have presented that the proposed method using CRO based on IoT systems significantly improves the overall oil production rate and reduces gas injection, energy consumption and cost compared to traditional algorithms. Therefore, it provides a more efficient system for the petroleum production industry.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3