Deterministic Construction of Compressed Sensing Measurement Matrix with Arbitrary Sizes via QC-LDPC and Arithmetic Sequence Sets

Author:

Wang Yue1,Qin Yali1ORCID,Ren Hongliang1

Affiliation:

1. Institute of Fiber-Optic Communication and Information Engineering, College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China

Abstract

It is of great significance to construct deterministic measurement matrices with good practical characteristics in Compressed Sensing (CS), including good reconstruction performance, low memory cost and low computing resources. Low-density-parity check (LDPC) codes and CS codes can be closely related. This paper presents a method of constructing compressed sensing measurement matrices based on quasi-cyclic (QC) LDPC codes and arithmetic sequence sets. The cyclic shift factor in each submatrix of QC-LDPC is determined by arithmetic sequence sets. Compared with random matrices, the proposed method has great advantages because it is generated based on a cyclic shift matrix, which requires less storage memory and lower computing resources. Because the restricted isometric property (RIP) is difficult to verify, mutual coherence and girth are used as computationally tractable indicators to evaluate the measurement matrix reconstruction performance. Compared with several typical matrices, the proposed measurement matrix has the minimum mutual coherence and superior reconstruction capability of CS signal according to one-dimensional (1D) signals and two-dimensional (2D) image simulation results. When the sampling rate is 0.2, the maximum (minimum) gain of peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) is up to 2.89 dB (0.33 dB) and 0.031 (0.016) while using 10 test images. Meanwhile, the reconstruction time is reduced by nearly half.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference49 articles.

1. Compressed sensing;Donoho;IEEE Trans. Inf. Theory.,2006

2. An Introduction To Compressive Sampling;Wakin;IEEE Signal Process. Mag.,2008

3. Imaging via compressive sampling;Romberg;IEEE Signal Process. Mag.,2008

4. Near-optimal signal recovery from random projections: Universal encoding strategies?;Candes;IEEE Trans. Inf. Theory,2006

5. Single-Pixel Imaging Authentication Using Sparse Hadamard Spectrum Coefficients;Xiao;IEEE Photon-Technol. Lett.,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3