Affiliation:
1. Departamento de Informática de Sistemas y Computadores, Universitat Politècnica de València, Camino de Vera, nº14, 46022 Valencia, Spain
2. Industrias Farmacéuticas Almirall, Ctra. N-II, km. 593, 08740 Sant Andreu de la Barca, Spain
Abstract
The pharmaceutical industry is facing significant economic challenges due to measures aimed at containing healthcare costs and evolving healthcare regulations. In this context, pharmaceutical laboratories seek to extend the lifespan of their machinery, particularly fluid bed dryers, which play a crucial role in the drug production process. Older fluid bed dryers, lacking advanced sensors for real-time temperature optimization, rely on fixed-time deterministic approaches controlled by operators. To address these limitations, a groundbreaking approach taking into account Exploration Data Analysis (EDA) and a Catboost machine-learning model is presented. This research aims to analyze and enhance a drug production process on a large scale, showcasing how AI algorithms can revolutionize the manufacturing industry. The Catboost model effectively reduces preheating phase time, resulting in significant energy savings. By continuously monitoring critical parameters, a paradigm shift from the conventional fixed-time models is achieved. It has been shown that the model is able to predict on average a reduction of 50.45% of the preheating process duration and up to 59.68% in some cases. Likewise, the energy consumption of the fluid bed dryer for the preheating process could be reduced on average by 50.48% and up to 59.76%, which would result on average in around 3.120 kWh energy consumption savings per year.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference23 articles.
1. (2023, September 01). Pharmaguide. Available online: https://www.pharmaguideline.com/2021/10/tablet-manufacturing-process-overview.html.
2. Parikh, D. (2017). How to Optimize Fluid Bed Processing Technology: Part of the Expertise in Pharmaceutical Process Technology Series, Academic Press.
3. A quality by design study applied to an industrial pharmaceutical fluid bed granulation;Lochmann;Eur. J. Pharm. Biopharm.,2012
4. Process analytical tools for monitoring, understanding, and control of pharmaceutical fluidized bed granulation: A review;Burggraeve;Eur. J. Pharm. Biopharm.,2013
5. Dynamic neural-network-based model-predictive control of an industrial baker’s yeast drying process;Becerikli;IEEE Trans. Neural Netw.,2008