A Surface Potential Model for Metal-Oxide-Semiconductor Transistors Operating near the Threshold Voltage

Author:

Chow Hwang-Cherng1,Lee Bo-Wen1,Cheng Shang-Ying1,Huang Yung-Hsuan1,Chang Ruey-Dar1ORCID

Affiliation:

1. Department of Electronics Engineering, Chang Gung University, 259 Wenhua 1st Road, Kweishan, Taoyuan 33302, Taiwan

Abstract

Device physics and accurate transistor modeling are necessary to reduce the operating voltage near the threshold for power-constrained circuits. Conventional device modeling for metal-oxide-semiconductor (MOS) transistors focuses on operations in either strong or weak inversion regimes, and the electrostatics at gate biases near the threshold voltage is rarely studied. This research proposed an analytical model to describe the distribution of the surface potential along the channel for near-threshold operation. Numerical device simulations were also performed to investigate the electrostatics near the threshold voltage. The numerical simulation with constant carrier mobility showed an overshoot in the transconductance due to decay of the lateral electric field with gate bias. The decay of the lateral electric field was predicted by the proposed analytical surface potential model which considered widening the channel length with flooding of the inversion carriers in the channel and gate overlap regions. The channel length widening effect saturated as the gate bias further increased. Therefore, evident transconductance overshoot was observed near the threshold voltage in short-channel devices.

Funder

National Science and Technology Council of the Republic of China, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3