Quantifying Coincidence in Non-Uniform Time Series with Mutual Graph Approximation: Speech and ECG Examples

Author:

Augustyniak Piotr1ORCID,Ślusarczyk Grażyna2ORCID

Affiliation:

1. Department of Biocybernetics and Biomedical Engineering, AGH University of Krakow, 30-059 Krakow, Poland

2. Institute of Applied Computer Science, Jagiellonian University, 30-348 Krakow, Poland

Abstract

Compressive sensing and arbitrary sampling are techniques of data volume reduction challenging the Shannon sampling theorem and expected to provide efficient storage while preserving original information. Irregularity of sampling is either a result of intentional optimization of a sampling grid or stems from sporadic occurrence or intermittent observability of a phenomenon. Quantitative comparison of irregular patterns similarity is usually preceded by a projection to a regular sampling space. In this paper, we study methods for direct comparison of time series in their original non-uniform grids. We also propose a linear graph to be a representation of the non-uniform signal and apply the Mutual Graph Approximation (MGA) method as a metric to infer the degree of similarity of the considered patterns. The MGA was implemented together with four state-of-the-art methods and tested with example speech signals and electrocardiograms projected to bandwidth-related and random sampling grids. Our results show that the performance of the proposed MGA method is comparable to most accurate (correlation of 0.964 vs. Frechet: 0.962 and Kleinberg: 0.934 for speech signals) and to less computationally expensive state-of-the-art distance metrics (both MGA and Hausdorf: O(L1+L2)). Moreover, direct comparison of non-uniform signals can be equivalent to cross-correlation of resampled signals (correlation of 0.964 vs. resampled: 0.960 for speech signals, and 0.956 vs. 0.966 for electrocardiograms) in applications as signal classification in both accuracy and computational complexity. Finally, the bandwidth-based resampling model plays a substantial role; usage of random grid is the primary cause of inaccuracy (correlation of 0.960 vs. for random sampling grid: 0.900 for speech signals, and 0.966 vs. 0.878, respectively, for electrocardiograms). These figures indicate that the proposed MGA method can be used as a simple yet effective tool for scoring similarity of signals directly in non-uniform sampling grids.

Funder

AGH University of Krakow

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3