Resource-Efficient Optimization for FPGA-Based Convolution Accelerator

Author:

Ma Yanhua12ORCID,Xu Qican1,Song Zerui1

Affiliation:

1. School of Microelectronics, Dalian University of Technology, Dalian 116024, China

2. Key Laboratory of Intelligent Control and Optimization for Industrial Equipment, Ministry of Education, Dalian University of Technology, Dalian 116024, China

Abstract

Convolution forms one of the most essential operations for the FPGA-based hardware accelerator. However, the existing designs often neglect the inherent architecture of FPGA, which puts forward an austere challenge on hardware resource. Even though some previous works have proposed approximate multipliers or convolution acceleration algorithms to deal with this issue, the inevitable accuracy loss and resource occupation easily lead to performance degradation. Toward this, we first propose two kinds of resource-efficient optimized accurate multipliers based on LUTs or carry chains. Then, targeting FPGA-based platforms, a generic multiply–accumulate structure is constructed by directly accumulating the partial products produced by our proposed optimized radix-4 Booth multipliers without intermediate multiplication and addition results. Experimental results demonstrate that our proposed multiplier achieves a maximum 51% look-up-table (LUT) reduction compared to the Vivado area-optimized multiplier IP. Furthermore, the convolutional process unit using the proposed structure achieves a 36% LUT reduction compared to existing methods. As case studies, the proposed method is applied to DCT transform, LeNet, and MobileNet-V3 to achieve hardware resource saving without loss of accuracy.

Funder

National Science and Technology Major Project

Aeronautical Science Foundation of China

Science and Technology Innovation Foundation of Dalian

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3