Substation Personnel Fall Detection Based on Improved YOLOX

Author:

Fan Xinnan12,Gong Qian2,Fan Rong2,Qian Jin3,Zhu Jie4,Xin Yuanxue2,Shi Pengfei15

Affiliation:

1. Jiangsu Key Laboratory of Power Transmission Distribution Equipment Technology, Hohai University, Changzhou 213022, China

2. College of Information Science and Engineering, Hohai University, Changzhou 213022, China

3. Jiangsu Province Hydrology and Water Resources Investigation Bureau, Nanjing 210011, China

4. Jiangsu Hydraulic Research Institute, Nanjing 210017, China

5. College of Intelligence and Automation, Hohai University, Changzhou 213022, China

Abstract

With the continuous promotion of smart substations, staff fall detection has become a key issue in automatic detection of substations. The injuries and safety hazards caused by falls among substation personnel are numerous. If a timely response can be made in the event of a fall, the injuries caused by falls can be reduced. In order to address the issues of low accuracy and poor real-time performance in detecting human falls in complex substation scenarios, this paper proposes an improved algorithm based on YOLOX. A customized feature extraction module is introduced to the YOLOX feature fusion network to extract diverse multiscale features. A recursive gated convolutional module is added to the head to enhance the expressive power of the features. Meanwhile, the SIoU(Soft Intersection over Union) loss function is utilized to provide more accurate position information for bounding boxes, thereby improving the model accuracy. Experimental results show that the improved algorithm achieves an mAP value of 78.45%, which is a 1.31% improvement over the original YOLOX. Compared to other similar algorithms, the proposed algorithm achieves high accuracy prediction of human falls with fewer parameters, demonstrating its effectiveness.

Funder

Changzhou Sci & Tech Program

Key Project of Jiangsu Provincial Key Laboratory of Transmission and Distribution Equipment Technology Team

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3