Explicit Representation of Mechanical Functions for Maintenance Decision Support

Author:

Song Mengchu1ORCID,Santos Ilmar F.2,Zhang Xinxin1,Wu Jing1,Lind Morten1

Affiliation:

1. Department of Electrical and Photonics Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

2. Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

Abstract

Artificial intelligence (AI) has been increasingly applied to condition-based maintenance (CBM), a knowledge-based method taking advantage of human expertise and other system knowledge that can serve as an alternative in cases in which machine learning is inapplicable due to a lack of training data. Functional information is seen as the most fundamental and important knowledge in maintenance decision making. This paper first proposes a mechanical functional modeling approach based on a functional modeling and reasoning methodology called multilevel flow modeling (MFM). The approach actually bridges the modeling gap between the mechanical level and the process level, which potentially extends the existing capability of MFM in rule-based diagnostics and prognostics from operation support to maintenance support. Based on this extension, a framework of optimized CBM is proposed, which can be used to diagnose potential mechanical failures from condition monitoring data and predict their future impacts in a qualitative way. More importantly, the framework uses MFM-based reliability-centered maintenance (RCM) to determine the importance of a detected potential failure, which can ensure the cost-effectiveness of CBM by adapting the maintenance requirements to specific operational contexts. This ability cannot be offered by existing CBM methods. An application to a mechanical test apparatus and hypothetical coupling with a process plant are used to demonstrate the proposed framework.

Funder

Danish Offshore Technology Centre, Denmark

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3