Modeling Speech Emotion Recognition via Attention-Oriented Parallel CNN Encoders

Author:

Makhmudov FazliddinORCID,Kutlimuratov Alpamis,Akhmedov FarkhodORCID,Abdallah Mohamed S.ORCID,Cho Young-ImORCID

Abstract

Meticulous learning of human emotions through speech is an indispensable function of modern speech emotion recognition (SER) models. Consequently, deriving and interpreting various crucial speech features from raw speech data are complicated responsibilities in terms of modeling to improve performance. Therefore, in this study, we developed a novel SER model via attention-oriented parallel convolutional neural network (CNN) encoders that parallelly acquire important features that are used for emotion classification. Particularly, MFCC, paralinguistic, and speech spectrogram features were derived and encoded by designing different CNN architectures individually for the features, and the encoded features were fed to attention mechanisms for further representation, and then classified. Empirical veracity executed on EMO-DB and IEMOCAP open datasets, and the results showed that the proposed model is more efficient than the baseline models. Especially, weighted accuracy (WA) and unweighted accuracy (UA) of the proposed model were equal to 71.8% and 70.9% in EMO-DB dataset scenario, respectively. Moreover, WA and UA rates were 72.4% and 71.1% with the IEMOCAP dataset.

Funder

MSIT (Ministry of Science and ICT), Korea

Gachon University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Newman-Watts-Strogatz topology in deep echo state networks for speech emotion recognition;Engineering Applications of Artificial Intelligence;2024-07

2. Enhancing Multimodal Emotion Recognition through Attention Mechanisms in BERT and CNN Architectures;Applied Sciences;2024-05-15

3. Privacy Preserving Federated Learning Approach for Speech Emotion Recognition;2023 26th International Conference on Computer and Information Technology (ICCIT);2023-12-13

4. Enhancing Tone Recognition in Large-Scale Social Media Data with Deep Learning and Big Data Processing;2023 5th International Conference on Artificial Intelligence and Computer Applications (ICAICA);2023-11-28

5. Genetic Algorithm for High-Dimensional Emotion Recognition from Speech Signals;Electronics;2023-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3