Abstract
Fully automated homes, equipped with the latest Internet of Things (IoT) devices, aiming to drastically improve the quality of lives of those inhabiting such homes, is it not a perfect setting for cyber threats? More than that, this is a fear of many regular citizens and a trending topic for researchers to apply Cyber Threat Intelligence (CTI) for seamless cyber security. This paper focuses on the Risk Assessment (RA) methodology for smarthome environments, targeting to include all types of IoT devices. Unfortunately, existing approaches mostly focus on the manual or periodic formal RA, or individual device-specific cyber security solutions. This paper presents a Dynamic Risk Assessment Framework (DRAF), aiming to automate the identification of ongoing attacks and the evaluation of the likelihood of associated risks. Moreover, DRAF dynamically proposes mitigation strategies when full automation of the decision making is not possible. The theoretical model of DRAF was implemented and tested in smarthome testbeds deployed in several European countries. The resulting data indicate strong promises for the automation of decision making to control the tightly coupled balance between cyber security and privacy compromise in terms of the embedded services’ usability, end-users’ expectations and their level of cyber concerns.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献