Investigating the Effect of Cross-Conjugation Patterns on the Optoelectronic Properties of 7,7′Isoindigo-Based Materials

Author:

Ren Shiwei12ORCID,Habibi Amirhossein3,Wang Yujie4,Yassar Abderrahim3ORCID

Affiliation:

1. Zhuhai Fudan Innovation Research Institute, Guangdong-Macao Cooperation Zone in Hengqin, Zhuhai 519001, China

2. Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai 200433, China

3. Laboratory of Physics of Interfaces and Thin Films−CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France

4. School of Luoyang Foreign Language, Luoyang 471000, China

Abstract

Isoindigo (IID) is widely used as a building block for the fabrication of organic semiconductor devices. Understanding the impact of cross-conjugation and linear conjugation on the optoelectronic properties of disubstituted IID is of great importance for the design of improved materials. In this study, phenyl and thienyl groups were substituted at the cross-conjugated 7,7′ position of IID to generate three novel organic semiconductor structures with a donor–acceptor architecture. The optoelectronic properties of this IID derivative were investigated and compared with those of the 6,6′ linearly conjugated IID analogs using UV–Vis spectroscopy and cyclic voltammetry. The experimental results were compared using density functional theory calculations to provide structure–property relationships based on substitution types and attachment sites for IID. The frontier orbital energy levels of the material did not vary dramatically with the position of the substituent, while the type of substituent showed a more significant influence on the HOMO’s energy level and oscillator strength. Phenyl-disubstituted 7,7′ IID (7Ph7′Ph) and thienyl-disubstituted 7,7′ IID (7Th7′Th) materials were used as electron transport layers in perovskite solar cells with a power conversion efficiency of 5.70% and 6.07%, respectively. These observations enhance our understanding of the electronic structure and optoelectronic properties of IID, guiding the design of the next generation of IID-based semiconductors.

Funder

National Research Agency

China Scholarship Council for a Ph.D. fellowship

fellowship of the China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3