Towards System-Level Simulation of a Miniature Electromagnetic Energy Harvester Model

Author:

Yuan Chengdong12ORCID,Schütz Arwed13ORCID,Hohlfeld Dennis2ORCID,Bechtold Tamara12ORCID

Affiliation:

1. Department of Engineering, Jade University of Applied Sciences, Friedrich-Paffrath-Str. 101, 26389 Wilhelmshaven, Germany

2. Institute of Electronic Appliances and Circuits, University of Rostock, Albert-Einstein-Str. 2, 18059 Rostock, Germany

3. Chair of Control Engineering, University of Augsburg, Am Technologiezentrum 8, 86159 Augsburg, Germany

Abstract

Energy harvesting, a solution to provide a lifetime power supply to wireless sensor nodes, has attracted widespread attention in the last two decades. An energy harvester collects ambient energy, e.g., solar, thermal, or vibration energy, and transforms it into electrical energy. In this work, we work on an electromagnetic energy harvester model, which is composed of four magnets oscillating along a coil. Such a device converts the vibrational energy into electrical energy. We reproduce the electromagnetic energy harvester model in finite element-based software. In order to include this model in a system-level simulation, the methodology of extracting a look-up table-based equivalent circuit model is presented. Such an equivalent circuit model enables the interaction of the electromagnetic energy harvester model with both electrical and mechanical compact models at the system-level. Furthermore, the matrix interpolation-based and algebraic parameterization-based parametric model order reduction methods are suggested for speeding up the generation of the equivalent circuit model and the design optimization process with respect to magnet dimensions. The efficiencies of these two methods are investigated and compared.

Funder

Jade University of Applied Sciences

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3