A Prediction Methodology of Energy Consumption Based on Deep Extreme Learning Machine and Comparative Analysis in Residential Buildings

Author:

Fayaz Muhammad,Kim DoHyeun

Abstract

In this paper, we have proposed a methodology for energy consumption prediction in residential buildings. The proposed method consists of four different layers, namely data acquisition, preprocessing, prediction, and performance evaluation. For experimental analysis, we have collected real data from four multi-storied residential building. The collected data are provided as input for the acquisition layer. In the pre-processing layer, several data cleaning and preprocessing schemes were deployed to remove abnormalities from the data. In the prediction layer, we have used the deep extreme learning machine (DELM) for energy consumption prediction. Further, we have also used the adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) in the prediction layer. In the DELM different numbers of hidden layers, different hidden neurons, and various types of activation functions have been used to achieve the optimal structure of DELM for energy consumption prediction. Similarly, in the ANN, we have employed a different combination of hidden neurons with different types of activation functions to get the optimal structure of ANN. To obtain the optimal structure of ANFIS, we have employed a different number and type of membership functions. In the performance evaluation layer for the comparative analysis of three prediction algorithms, we have used the mean absolute error (MAE), root mean square error (RMSE) and mean absolute percentage error (MAPE). The results indicate that the performance of DELM is far better than ANN and ANFIS for one-week and one-month hourly energy prediction on the given data.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference53 articles.

1. Energy Consumption Optimization and User Comfort Management in Residential Buildings Using a Bat Algorithm and Fuzzy Logic

2. The Outlook for Energy: A View to 2040;Selin,2013

3. International Energy Outlook;Sieminski,2014

4. A Short Guide to Electric Utility Load Forecasting;Mitchell,1986

5. A review on buildings energy consumption information

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3