Abstract
This paper presents a novel form of feedback linearization control (FBL) of boost-type DC/DC converter: to reach highly accurate output voltage control. Integral action has been inserted into the block diagram of the control scheme. The state-space model of the boost converter is highly nonlinear. Accordingly, the design procedure of the controller is more complex. The paper presents the state-space modeling of the boost converter and details the design procedure of the nonlinear FBL controller step by step. The main goal of this paper is to highlight the importance of the error integrator in the FBL control loop. The proposed method has been tested by a numerical example and compared with an existing and validated two-loop controller. Both the dynamical and steady-state behavior of the examined boost converter performed better than the reference system. The steady-state error of the output voltage is almost eliminated, while the dynamical error decreased to 5% in comparison to the two-loop controller.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献