Wildfire and Smoke Detection Using Staged YOLO Model and Ensemble CNN

Author:

Bahhar Chayma,Ksibi AmelORCID,Ayadi Manel,Jamjoom Mona M.,Ullah ZahidORCID,Soufiene Ben Othman,Sakli Hedi

Abstract

One of the most expensive and fatal natural disasters in the world is forest fires. For this reason, early discovery of forest fires helps minimize mortality and harm to ecosystems and forest life. The present research enriches the body of knowledge by evaluating the effectiveness of an efficient wildfire and smoke detection solution implementing ensembles of multiple convolutional neural network architectures tackling two different computer vision tasks in a stage format. The proposed architecture combines the YOLO architecture with two weights with a voting ensemble CNN architecture. The pipeline works in two stages. If the CNN detects the existence of abnormality in the frame, then the YOLO architecture localizes the smoke or fire. The addressed tasks are classification and detection in the presented method. The obtained model’s weights achieve very decent results during training and testing. The classification model achieves a 0.95 F1-score, 0.99 accuracy, and 0.98e sensitivity. The model uses a transfer learning strategy for the classification task. The evaluation of the detector model reveals strong results by achieving a 0.85 mean average precision with 0.5 threshold (mAP@0.5) score for the smoke detection model and 0.76 mAP for the combined model. The smoke detection model also achieves a 0.93 F1-score. Overall, the presented deep learning pipeline shows some important experimental results with potential implementation capabilities despite some issues encountered during training, such as the lack of good-quality real-world unmanned aerial vehicle (UAV)-captured fire and smoke images.

Funder

Princess Nourah bint Abdulrahman University Researchers Supporting Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3