Abstract
Approximate or inaccurate addition is found to be viable for practical applications which have an inherent error tolerance. Approximate addition is realized using an approximate adder, and many approximate adder designs have been put forward in the literature targeting an acceptable trade-off between quality of results and savings in design metrics compared to the accurate adder. Approximate adders can be classified into three categories as: (a) suitable for FPGA implementation, (b) suitable for ASIC type implementation, and (c) suitable for FPGA and ASIC type implementations. Among these, approximate adders, which are suitable for FPGA and ASIC type implementations are particularly interesting given their versatility and they are typically designed at the gate level. Depending on the way approximation is built into an approximate adder, approximate adders can be classified into two kinds as static approximate adders and dynamic approximate adders. This paper compares and analyzes static approximate adders which are suitable for both FPGA and ASIC type implementations. We consider many static approximate adders and evaluate their performance for a digital image processing application using standard figures of merit such as peak signal to noise ratio and structural similarity index metric. We provide the error metrics of approximate adders, and the design metrics of accurate and approximate adders corresponding to FPGA and ASIC type implementations. For the FPGA implementation, we considered a Xilinx Artix-7 FPGA, and for an ASIC type implementation, we considered a 32/28 nm CMOS standard digital cell library. While the inferences from this work could serve as a useful reference to determine an optimum static approximate adder for a practical application, in particular, we found approximate adders HOAANED, HERLOA and M-HERLOA to be preferable.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference42 articles.
1. https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
2. https://research.google/pubs/pub41694/
3. https://www.tomshardware.com/news/google-tensor-processing-unit-machine-learning,31834.html
4. A k-means clustering algorithm;Hartigan;J. R. Stat. Soc. Ser. C Appl. Stat.,1979
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献