Effect of Feature Selection on the Accuracy of Music Popularity Classification Using Machine Learning Algorithms

Author:

Khan FaheemORCID,Tarimer IlhanORCID,Alwageed Hathal Salamah,Karadağ Buse Cennet,Fayaz Muhammad,Abdusalomov Akmalbek BobomirzaevichORCID,Cho Young-ImORCID

Abstract

This research aims to analyze the effect of feature selection on the accuracy of music popularity classification using machine learning algorithms. The data of Spotify, the most used music listening platform today, was used in the research. In the feature selection stage, features with low correlation were removed from the dataset using the filter feature selection method. Machine learning algorithms using all features produced 95.15% accuracy, while machine learning algorithms using features selected by feature selection produced 95.14% accuracy. The features selected by feature selection were sufficient for classification of popularity in established algorithms. In addition, this dataset contains fewer features, so the computation time is shorter. The reason why Big O time complexity is lower than models constructed without feature selection is that the number of features, which is the most important parameter in time complexity, is low. The statistical analysis was performed on the pre-processed data and meaningful information was produced from the data using machine learning algorithms.

Funder

Korea Agency for Technology and Standards

ITR

Gachon University research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference41 articles.

1. Music Data Mining;Li,2012

2. Functions of Music in Everyday Life: An Exploratory Study Using the Experience Sampling Method

3. Music genre classification using data mining and machine learning;Prabhu;Inf. Technol. -New Gener.,2018

4. Popular Music

5. Audio Features & Analysis

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3