Abstract
In this paper, a low-complexity decoder based on a neural network is proposed to decode binary quadratic residue (QR) codes. The proposed decoder is based on the neural min-sum algorithm and the modified random redundant decoder (mRRD) algorithm. This new method has the same asymptotic time complexity as the min-sum algorithm, which is much lower than the difference on syndromes (DS) algorithm. Simulation results show that the proposed algorithm achieves a gain of more than 0.4 dB when compared to the DS algorithm. Furthermore, a simplified approach based on trapping sets is applied to reduce the complexity of the mRRD. This simplification leads to a slight loss in error performance and a reduction in implementation complexity.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献