Abstract
This paper presents a 1 × 4 linear antenna array working at 28 GHz for 5G communication systems. The proposed array employs four rectangular slotted antenna elements fed by a 1 × 4 T-power divider. An artificial magnetic conductor (AMC) layer is placed below the array for increasing the radiation intensity and improving overall array gain. The measured impedance bandwidth of the proposed array with (|S11| < −10 dB) is extended from 25.36 to 26.03 GHz (with a bandwidth of 0.67 GHz) and from 26.75 to 28.81 GHz (with a bandwidth of 2.06 GHz). The proposed array design exhibits a measured gain value that varies between 11.8 dBi and 13.1 dBi within the operating bands and reaches 13.1 dBi at 28 GHz. The proposed array achieves a radiation efficiency of 83.05%, and a front-to-back ratio ranging between 15 and 20 dB across the operating frequency band. The array is fabricated and tested with good matching between the simulated and tested outcomes. The improved performance of the array makes it a suitable candidate for 5G new radio (NR) communications.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献