Personalized Federated Learning Based on Bidirectional Knowledge Distillation for WiFi Gesture Recognition

Author:

Geng Huan12ORCID,Deng Dongshang12ORCID,Zhang Weidong12ORCID,Ji Ping12,Wu Xuangou12ORCID

Affiliation:

1. School of Computer Science and Technology, Anhui University of Technology, Ma’anshan 243032, China

2. Anhui Engineering Research Center for Intelligent Applications and Security of Industrial Internet, Ma’anshan 243032, China

Abstract

WiFi-based human gesture recognition has a wide range of applications in smart homes. Existing methods train gesture classification models by collecting large amounts of WiFi signal data in a centralized manner. However, centralized training faces challenges, including high communication overhead and the risk of data privacy leakage. Federated learning (FL) provides an opportunity to collaboratively train and share models without compromising data privacy. One of the main challenges FL faces is data that is non-Independent and Identically Distributed (non-IID) across clients. Specifically, in the gesture recognition scenario, since the transmission of WiFi signals is susceptible to cross-environment and cross-person interference, non-IID mainly manifests itself as a cross-domain problem. Cross-domain makes the knowledge learned between client models incompatible. Therefore, in the cross-domain scenario, effectively extracting and combining the knowledge learned by the client is a challenge. To solve this problem, we propose pFedBKD, a novel personalized federated learning scheme via bidirectional distillation. First, the knowledge that is beneficial to the client is extracted from the shared server model through knowledge distillation in the client, which helps train the personalized model of the client. Second, the server adaptively adjusts the aggregation weights according to the deviation between the shared model and the client’s local model so that the server’s shared model can extract more public knowledge. We conduct experiments on multiple open-source datasets. Experimental results show that our method is superior to existing methods and effectively alleviates the problem of reduced model recognition accuracy caused by cross-domain challenges.

Funder

National Nature Science Foundation of China

University Synergy Innovation Program of Anhui Province

Natural Science Foundation of Anhui Provincial Education Department

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3