An Efficient Smoke Detection Algorithm Based on Deep Belief Network Classifier Using Energy and Intensity Features

Author:

Kaabi RabebORCID,Bouchouicha MoezORCID,Mouelhi Aymen,Sayadi MounirORCID,Moreau Eric

Abstract

Smoke detection plays an important role in forest safety warning systems and fire prevention. Complicated changes in the shape, texture, and color of smoke remain a substantial challenge to identify smoke in a given image. In this paper, a new algorithm using the deep belief network (DBN) is designed for smoke detection. Unlike popular deep convolutional networks (e.g., Alex-Net, VGG-Net, Res-Net, Dense-Net, and the denoising convolution neural network (DNCNN), specifically devoted to detecting smoke), our proposed end-to-end network is mainly based on DBN. Indeed, most traditional smoke detection algorithms follow the pattern recognition process which consists basically feature extraction and classification. After extracting the candidate regions, the main idea is to perform both smoke recognition and smoke-no-smoke region classification using static and dynamic smoke characteristics. However, manual smoke detection cannot meet the requirements of a high smoke detection rate and has a long processing time. The convolutional neural network (CNN)-based smoke detection methods are significantly slower due to the maxpooling operation. In addition, the training phase can take a lot of time if the computer is not equipped with a powerful graphics processing unit (GPU). Thus, the contribution of this work is the development of a preprocessing step including a new combination of features—smoke color, smoke motion, and energy—to extract the regions of interest which are inserted within a simple architecture with the deep belief network (DBN). Our proposed method is able to classify and localize reliably the smoke regions providing an interesting computation time and improved performance metrics. First, the Gaussian mixture model (GMM) is employed to capture the frames containing a large amount of motion. After applying RGB rules to smoke pixels and analyzing the energy attitude of smoke regions, extracted features are then used to feed a DBN for classification. Experimental results conducted on the publicly available smoke detection database confirm that the DBN has reached a high detection rate that exceeded an average of 96% when tested on different videos containing smoke-like objects, which make smoke recognition more challenging. The proposed methodology provided high detection ratios and low false alarms, and guaranteed robustness verified by evaluations of accuracy, F1-score, and recall for noisy and non-noisy images with and without noise.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3