Smart Camera for Quality Inspection and Grading of Food Products

Author:

Guo Zhonghua,Zhang Meng,Lee Dah-JyeORCID,Simons TaylorORCID

Abstract

Due to the increasing consumption of food products and demand for food quality and safety, most food processing facilities in the United States utilize machines to automate their processes, such as cleaning, inspection and grading, packing, storing, and shipping. Machine vision technology has been a proven solution for inspection and grading of food products since the late 1980s. The remaining challenges, especially for small to midsize facilities, include the system and operating costs, demand for high-skilled workers for complicated configuration and operation and, in some cases, unsatisfactory results. This paper focuses on the development of an embedded solution with learning capability to alleviate these challenges. Three simple application cases are included to demonstrate the operation of this unique solution. Two datasets of more challenging cases were created to analyze and demonstrate the performance of our visual inspection algorithm. One dataset includes infrared images of Medjool dates of four levels of skin delamination for surface quality grading. The other one consists of grayscale images of oysters with varying shape for shape quality evaluation. Our algorithm achieved a grading accuracy of 95.0% on the date dataset and 98.6% on the oyster dataset, both easily surpassed manual grading, which constantly faces the challenges of human fatigue or other distractions. Details of the design and functions of our smart camera and our simple visual inspection algorithm are discussed in this paper.

Funder

US Department of Agriculture

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference48 articles.

1. A computer vision system for defect discrimination and grading in tomatoes using machine learning and image processing

2. A Machine Vision Technique for Grading of Harvested Mangoes Based on Maturity and Quality

3. Prepackaging Sorting of Guava Fruits using Machine Vision based Fruit Sorter System based on K-Nearest Neighbor Algorithm;Kanade;Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol.,2018

4. Evaluation of plum fruit maturity by image processing techniques

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3