Analytical Performance Evaluation of Massive MIMO Techniques for SC-FDE Modulations

Author:

Fernandes DanielORCID,Cercas FranciscoORCID,Dinis RuiORCID

Abstract

In the Fifth Generation of telecommunications networks (5G), it is possible to use massive Multiple Input Multiple Output (MIMO) systems, which require efficient receivers capable of reaching good performance values. MIMO systems can also be extended to massive MIMO (mMIMO) systems, while maintaining their, sometimes exceptional, performance. However, we must be aware that this implies an increase in the receiver complexity. Therefore, the use of mMIMO in 5G and future generations of mobile receivers will only be feasible if they use very efficient algorithms, so as to maintain their excellent performance, while coping with increasing and critical user demands. Having this in mind, this paper presents and compares three types of receivers used in MIMO systems, for further use with mMIMO systems, which use Single-Carrier with Frequency-Domain Equalization (SC-FDE), Iterative Block Decision Feedback Equalization (IB-DFE) and Maximum Ratio Combining (MRC) techniques. This paper presents and compares the theoretical and simulated performance values for these receivers in terms of their Bit Error Rate (BER) and correlation factor. While one of the receivers studied in this paper achieves a BER performance nearly matching the Matched Filter Bound (MFB), the other receivers (IB-DFE and MRC) are more than 1 dB away from MFB. The results obtained in this paper can help the development of ongoing research involving hybrid analog/digital receivers for 5G and future generations of mobile communications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3