Double Quantification of Template and Network for Palmprint Recognition

Author:

Lin Qizhou1ORCID,Leng Lu1ORCID,Kim Cheonshik2ORCID

Affiliation:

1. Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition, Nanchang Hangkong University, Nanchang 330063, China

2. Department of Computer Engineering, Sejong University, Seoul 05006, Republic of Korea

Abstract

The outputs of deep hash network (DHN) are binary codes, so DHN has high retrieval efficiency in matching phase and can be used for high-speed palmprint recognition, which is a promising biometric modality. In this paper, the templates and network parameters are both quantized for fast and light-weight palmprint recognition. The parameters of DHN are binarized to compress the network weight and accelerate the speed. To avoid accuracy degradation caused by quantization, mutual information is leveraged to optimize the ambiguity in Hamming space to obtain a tri-valued hash code as a palmprint template. Kleene Logic’s tri-valued Hamming distance measures the dissimilarity between palmprint templates. The ablation experiments are tested on the binarization of the network parameter, and the normalization and trivialization of the deep hash output value. The sufficient experiments conducted on several contact and contactless palmprint datasets confirm the multiple advantages of our method.

Funder

National Natural Science Foundation of China

Technology Innovation Guidance Program Project

Innovation Foundation for Postgraduate Student of Nanchang Hangkong University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research On Palmprint Recognition Based On Mechanism And Data;Proceedings of the International Conference on Computer Vision and Deep Learning;2024-01-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3