A Complex Empirical Mode Decomposition for Multivariant Traffic Time Series

Author:

Shen Guochen1ORCID,Zhang Lei1ORCID

Affiliation:

1. Department of Traffic Information and Control Engineering, Tongji University, Shanghai 200092, China

Abstract

Data-driven modeling methods have been widely used in many applications or studies of traffic systems with complexity and chaos. The empirical mode decomposition (EMD) family provides a lightweight analytical method for non-stationary and non-linear data. However, a large amount of traffic data in practice are usually multidimensional, so the EMD family cannot be used directly for those data. In this paper, a method to calculate the extremum point and the envelope-like function (series) from the complex function (series) is proposed so that the EMD family can be applied to two-variate traffic time-series data. Compared to the existing multivariate EMD, the proposed method has advantages in computational burden, flexibility and adaptivity. Two-dimensional trajectory data were used to test the method and its oscillatory characteristics were extracted. The decomposed feature can be used for data-driven traffic analysis and modeling. The proposed method also extends the utilization of EMD to multivariate traffic data for applications such as traffic data denoising, pattern recognition, traffic flow dynamic evaluation, traffic prediction, etc.

Funder

the Key R&D Program of Zhejiang Province, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3