Performance Analysis of a Reconfigurable-Intelligent-Surfaces-Assisted V2V Communication System

Author:

Li Kainan1,Zhou Siyuan1,Tan Guoping1

Affiliation:

1. School of Computer and Information, Hohai University, Nanjing 211100, China

Abstract

Novel reconfigurable Intelligent Surfaces (RISs) area technology can improve the communication performance by changing the wireless transmission environment. Introducing RIS technology into Vehicle-to-Vehicle (V2V) communication environments can enhance the communication reliability by creating Line-of-Sight (LoS) communication links, thereby effectively improving the communication performance. However, in RIS-assisted V2V large-scale communication networks, the stochasticity of network nodes and random interference can impact performance. In this article, we examine the outage communication transmission performance of an RIS-assisted V2V communication network. We select the signal transmission mode based on the obstacle presence between vehicles and use the stochastic geometry theory to calculate the probabilities of the two modes: direct mode and RIS-assisted mode. By deriving the communication distance distribution and the aggregate interference distribution, we evaluate V2V communication in the direct mode to assess its transmission performance in two scenarios and obtain the overall outage probability. The numerical results demonstrate a better performance in RIS-assisted V2V networks, with an improved optimal phase shift scheme over that of the original V2V network. Monte Carlo simulation validated our analytical findings.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Funded Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Futuristic Trends Toward Connected Autonomous Vehicles in Hybrid Vehicular Networks;2023 4th International Conference on Intelligent Technologies (CONIT);2024-06-21

2. Modeling and Performance Analysis of mmWave and WiFi-Based Vehicle Communications;Electronics;2024-04-03

3. On the Performance of Two-Way Full-Duplex RIS-Aided Vehicular Networks Over Double Nakagami-m Fading Channels;2023 IEEE 7th Conference on Information and Communication Technology (CICT);2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3