URNet: An UNet-Based Model with Residual Mechanism for Monocular Depth Estimation

Author:

Duong Hoang-Thanh1ORCID,Chen Hsi-Min1,Chang Che-Cheng1ORCID

Affiliation:

1. Department of Information Engineering and Computer Science, Feng Chia University, Taichung 40724, Taiwan

Abstract

Autonomous vehicle systems rely heavily upon depth estimation, which facilitates the improvement of precision and stability in automated decision-making systems. Noteworthily, the technique of monocular depth estimation is critical for one of these feasible implementations. In the area of segmentation of medical images, UNet is a well-known encoder–decoder structure. Moreover, several studies have proven its further potential for monocular depth estimation. Similarly, based on UNet, we aim to propose a novel model of monocular depth estimation, which is constructed from the benefits of classical UNet and residual learning mechanisms and named URNet. Particularly, we employ the KITTI dataset in conjunction with the Eigen split strategy to determine the efficacy of our model. Compared with other studies, our URNet is significantly better, on the basis of higher the precision and lower error rate. Hence, it can deal properly with the depth estimation issue for autonomous driving systems.

Funder

National Science and Technology Council, Taiwan, R.O.C.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3