A Secure and Anonymous Authentication Protocol Based on Three-Factor Wireless Medical Sensor Networks

Author:

Lee JoonYoung1ORCID,Oh Jihyeon1ORCID,Park Youngho12ORCID

Affiliation:

1. School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

2. School of Electronics Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

Abstract

Wireless medical sensor networks (WMSNs), a type of wireless sensor network (WSN), have enabled medical professionals to identify patients’ health information in real time to identify and diagnose their conditions. However, since wireless communication is performed through an open channel, an attacker can steal or manipulate the transmitted and received information. Because these attacks are directly related to the patients’ lives, it is necessary to prevent these attacks upfront by providing the security of WMSN communication. Although authentication protocols are continuously developed to establish the security of WMSN communication, they are still vulnerable to attacks. Recently, Yuanbing et al. proposed a secure authentication scheme for WMSN. They emphasized that their protocol is able to resist various attacks and can ensure mutual authentication. Unfortunately, this paper demonstrates that Yuanbing et al.’s protocol is vulnerable to smart card stolen attacks, ID/password guessing attacks, and sensor node capture attacks. In order to overcome the weaknesses and effectiveness of existing studies and to ensure secure communication and user anonymity of WMSN, we propose a secure and anonymous authentication protocol. The proposed protocol can prevent sensor capture, guessing, and man-in-the-middle attacks. To demonstrate the security of the proposed protocol, we perform various formal and informal analyses using AVISPA tools, ROR models, and BAN logic. Additionally, we compare the security aspects with related protocols to prove that the proposed protocol has excellent security. We also prove the effectiveness of our proposed protocol compared with related protocols in computation and communication costs. Our protocol has low or comparable computation and communication costs compared to related protocols. Thus, our protocol can provide services in the WMSN environment.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3